В ДВФУ и ДВО РАН разработали материал со световыми «антеннами»

20.04.2021 Александр Зверев, департамент внешних коммуникаций ДВФУ 1
Иллюстрация предоставлена департаментом внешних коммуникаций ДВФУ

Материал на основе ионов европия (Eu III) со световыми «антеннами» в виде специальных молекул усиленно поглощает и испускает свет. Он может стать основой широкого спектра других соединений-светопреобразователей. Некоторые из них можно применять, чтобы увеличить КПД солнечных панелей, другие — использовать в виде добавок к твердым материалам, чтобы визуально наблюдать места наибольшего напряжения материала при нагрузках, — например, определять с высокой точностью наличие микротрещин на крыльях самолетов или в других деталях.


Ученые из Дальневосточного федерального университета (ДВФУ) и Института химии ДВО РАН опубликовали в журнале  Spectrochimica Acta, статью, где рассказали об электронной структуре химических соединений на основе ионов европия (Eu (III) – тяжелого редкоземельного металла.  Результаты получены благодаря развиваемому в ДВФУ и ДВО РАН методу молекулярного дизайна. На основе большой базы знаний исследователи создают теоретическую модель и вносят изменения в молекулу, чтобы поменять или улучшить её свойства. Если они замечают в полученном «эскизе» что-то интересное, то проводят синтез и экспериментально подтверждают теоретическую модель. 


«Мы идем от теории к практике, изучая электронную структуру химического соединения и детально разбираясь в механизме/причинах люминесценции комплексных соединений редкоземельных элементов (лантаноидов). Таких исследований мало, в силу сложности анализа. К слову, выходной файл расчета одного соединения занимает 20МБ, на одно вещество таких файлов приходится около 5, — говорит один из авторов исследования, кандидат физ.-мат. наук Антон Шурыгин, сотрудник Центра фундаментального материаловедения ДВФУ и ДВО РАН. — Один из интересных результатов, который наша команда получила при молекулярном моделировании лантаноидов — обнаружение механолюминесцентных свойств полученных соединений. Имея вид кристаллического порошка, они «реагируют» на попытку «раскрошить» кристаллы, испуская видимый свет или генерируя электрический ток.  Например, тонкое покрытие на крыле самолета позволит фиксировать образование микротрещин. Если добавить такой порошок в бетон, можно будет визуально фиксировать деформацию строительных сооружений». 


Опираясь на разрабатываемый в ДВФУ и ДВО РАН подход, возможно точно и полно описать свойства и возможные области применения новых соединений и после этого провести их направленный синтез. Преимущество — в экономии времени, денег и сырья. 


Ионы Eu (III) — самые «яркие», их используют для светотрансформирующихся покрытий. Такие покрытия поглощают широкий спектр солнечного излучения и испускают видимое излучение строго определенной длины волны. Например, покрытия на основе европия испускают свет с длиной волны 614 нм, цвет излучения при этом оранжевый (HEX #FF8D00). 


Исследователи в шутку называют европий чемпионом люминесценции. При этом существуют еще 14 элементов-лантаноидов (редкоземельных металлов) со свойствами, недоступными для европия и наоборот. Например, в работе по результатам изучения комплекса нитратов, где менялся лишь центральный ион отмечается, что такие ионы как церий, неодим, эрбий и иттербий меняли области применения комплекса. Так, нитрат церия можно применять как добавку, ускоряющую рост растения Anoectochilus roxburghii (драгоценных орхидей). 


На следующем этапе ученые планируют добавить к соединениям редкоземельных элементов переходные металлы (например, цинка), для получения гетерометаллических комплексов. Это позволит достигнуть большей фотостабильности и расширить физико-химические свойства получаемой структуры. 


Появление синхротрона на Русском острове сильно упростит задачу изучения электронной структуры комплексов редкоземельных металлов. Наличие собственной установки поможет обойти ограничения в виде больших очередей на работы, высоких ставок за время использования, к которым необходимо еще прибавить затраты на командировку ввиду удаленности других установок.


Разработка материалов с новыми свойствами для разных областей применения — одно из приоритетных направлений Стратегии научно-технологического развития РФ и основных исследовательских направлений в ДВФУ, которое университет реализует в сотрудничестве с Российской академией наук. Так, недавно ученые разработали композитные керамические материалы-люминофоры, потребляющие на 20-30 процентов меньше энергии по сравнению с коммерческими аналогами.  

16:10 «Охота на лис». Телесериал 16+
17:00 Новости 12+
17:10 «Охота на лис». Телесериал 16+
18:00 Новости 12+
Получайте лучшие новости от Большой Азии

Подпишитесь на рассылку последних новостей.

Абхазия Азербайджан Армения Афганистан Бангладеш Бахрейн Бруней Бутан Восточный Тимор Вьетнам Грузия Израиль Индия Индонезия Иордания Ирак Иран Йемен Казахстан Камбоджа Катар Кипр Киргизия Китай КНДР Кувейт Лаос Ливан Малайзия Мальдивские Острова Монголия Мьянма Непал ОАЭ Оман Пакистан Палестина Республика Корея Россия Саудовская Аравия Сингапур Сирия Таджикистан Таиланд Туркменистан Турция Узбекистан Филиппины Шри-Ланка Южная Осетия Япония